SyncVibe: Fast and Secure Device Pairing through Physical Vibration on Commodity Smartphones

Kyuin Lee¹, Vijay Raghunathan², Anand Raghunathan², and Younghyun Kim¹

¹Department of Electrical and Computer Engineering, University of Wisconsin—Madison

²School of Electrical and Computer Engineering, Purdue University

Challenges in Pervasive Computing

- Constant pairing and un-pairing between devices
- Current pairing paradigm degrades user experience
 - Manually entering pins
- Results in bulky user interface components
 - Screens, keyboards, etc.

Pairing Procedure of Bluetooth

1. Turn Bluetooth on and search

3. Confirm or enter the passkey

2. Passkey generated by the host

SyncVibe: Pairing through Physical Vibrations

1. Two pairing devices that share no prior knowledge

2. Direct contact between devices while motor vibrates

3. High-bandwidth wireless connection established

SyncVibe: Key Features

Simple and intuitive pairing procedure

Small-footprint and low-cost hardware

Protection against eavesdropping and man-in-the-middle attacks

On-off Keying Modulation

- On-off keying (OOK) is commonly used method to modulate data
 - Vibration period (t) must be controlled with fine granularity

Challenges in Vibratory Communication

- Lack of precise timing control due to:
 - 1. Slow vibration motor response
 - 2. Non-real-time property of OS

Challenges in Vibratory Communication

Asynchronous transmission

Synchronization

- SyncVibe uses OOK
- Synchronization pattern: where synchronization takes place
 - Bit pattern of multiple 0s followed by 1 (i.e., 0001)
 - Inserted only when k consecutive bits do not contain synchronization pattern
- Pilot marker: signals start of data transmission
 - Allows receiver to measure maximum vibration amplitude

SyncVibe - Modulation

SyncVibe - Demodulation

Expected Bits per Second

Expected bps = bps x effective bit ratio x success rate

$$= \frac{1}{t} \times \frac{l}{l+s} \times r \text{ (bps)}$$

- *r: rate of successful pairing attempts
- *t: time-interval representing each bit
- -/: length of pairing data bits
- *s: total number of overhead bits (pilot, end and synchronization markers) added
- -k: length of maximum un-synchronizable bits
- Small k: relatively \downarrow effective bit ratio, relatively \uparrow success rate
- Large k: relatively ↑ effective bit ratio, relatively ↓ success rate

Prototype

- Standard Android API
 - No H/W and kernel modification
- ADXL345 at 1600 Hz
 - Most commonly used accelerometer
- Synchronization pattern: 00001
- Vibration period (t) = 40, 50, and 60 ms
- 100 samples of 150 (L) data bits

Trade-off in Expected BPS

Trade-off in Expected BPS

For each t, there exist optimal k that maximize expected bps

Pairing Success Rate

With synchronization

Without synchronization

Transmission Medium

Transmission Environment

Expected Pairing Time

t	k	Effective bit ratio	Bit error rate	Pairing time
40 ms	30 bits	97.4%	0.95%	6.74 s
50 ms	35 bits	98.2%	0.61%	7.87 s
60 ms	40 bits	98.8%	0.67%	9.34 s

- Average expected pairing time between 6 9 s
- Bit-wise error less than 1%

Conclusion

- SyncVibe removes hassle of manual pairing procedure
- Synchronization achieved with minimal insertion of overhead bits
- Proposed scheme is not limited to pairing purposes
- Average pairing time of 6.7 s

Thank You

- Questions?
- Supported by Wisconsin Alumni Research Foundation and NSF

