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SECURE AUTHENTICATION

�2Make your Service Desk GDPR Compliant 
https://www.fastpasscorp.com/why-fastpass/insights/idc-gdpr-password-reset/



USABILITY CHALLENGE IN CURRENT IOT DEVICE AUTHENTICATION
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All connections secured by user or pre-defined password

High user effort during initial authentication procedure 

SSID: BRNW-XXX 
 

PW:  AB1B23F1S

Initial authentication



ZERO-INTERACTION PAIRING AND AUTHENTICATION (ZIPA)

• Devices within authentication range under full control of legitimate user 

• Adversarial devices cannot be placed within authentication range
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Authentication range decides authentication or rejection of devices

Adversary Authentication range



Periodic  
update
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Zero-involvement,  periodic update, diverse password

ZERO-INTERACTION PAIRING AND AUTHENTICATION (ZIPA)



RESEARCH QUESTIONS

• How can we easily balance security and usability of ZIPA methods? 

‣ Key reconciliation parameter is an important factor to balance security vs. usability 

‣ We propose a generic framework to quickly obtain a balanced reconciliation parameter 
based on provided authentication range
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•  Among many, which key reconciliation scheme should be used? 

‣ Previous ZIPA works utilize different reconciliation schemes 

‣ We analyze two of the most widely used ones in terms of: 
• Error correcting performance 
• Entropy loss 
• Computation



ZIPA’S THREE-STAGE PIPELINE

• Measurement: devices independently measure context signal 

• Bit quantization: signal is quantized into environmental bits, B 

• Key reconciliation: difference is corrected to final key, K
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KEY RECONCILIATION

• Bit agreement rate (BAR) decreases with increasing distance
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The parameter of key reconciliation scheme determines bit correction

Authentication 
 range

BARa=93.6%BARl=94.2%

• BARl : lowest BAR achieved between legitimate device pairs 

• BARa: highest BAR achieved between adversarial device pairs

[1] VoltKey: Continuous Secret Key Generation Based on Power Line Noise for Zero-Involvement Pairing and Authentication
Kyuin Lee, Neil Klingensmith, Suman Banerjee, and Younghyun Kim
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 3, Article 93 (September 2019)



BALANCING SECURITY AND USABILITY
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False rejection rate (FRR)
False acceptance rate (FAR)

Equal error rate (EER)

Reconciliation parameter needs to be on point of equal error rate (EER)

• Too low error correcting parameter results in low security
• Too high error correcting parameter results in low usability
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PROPOSED FRAMEWORK

�10
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Supported BAR model can be built with different reconciliation schemes



KEY RECONCILIATION SCHEME  ( ECC—BASED, FUZZY COMMITMENT )

• k = length of K in bits     

• PRNG = pseudo-random number generator 

• ENCODE and DECODE = error correcting codes (i.e., Reed-Solomon ( T,k ) ) 

• T is the error correction parameter during ENCODE and DECODE
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1) KA = PRNG( k )

2) λA = RS.ENCODE(T, KA)

3) σ = BA ⨁ λA

4) σ, SHA256(KA) λB = σ ⨁ BB

5) KB = RS.DECODE(T, λA)

6) HASH( KA ) = HASH( KB ) 

Device A (Host) Device B (Client)



KEY RECONCILIATION SCHEME  ( CS—BASED )

• Φ = sensing matrix of dimension k x M 

• C = compressed Key 

• M, the number of non-compressed bits in Φ, is the parameter
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1) KA = BA KB = BB

2) CA = Φ(k x M)  ⋅  KA CB = Φ(k x M)  ⋅  KB 

3) CA , SHA256( KA ) ΔC = CA — CB

4) ΔB = L1.min ( ΔC )

5) KB = BB ⨁ ΔB

6) HASH( KA ) = HASH( KB ) 

Device A (Host) Device B (Client)



CHARACTERIZATION AND ANALYSIS

• Reconciliation performance, resulting entropy, and computation with k = 128 bits 

• 100,000 bits on two bit error models with BAR ranging from 60% — 97%:  

‣ Independent: equal chance of error in each bit position 

‣ Burst: Simple-Gilbert model with r (probability of transitioning from bad to good state)
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5002500
Bit error position

Independant

Simple-Gilbert  
(r=0.2)

Simple-Gilbert  
(r=0.1)

BAR=90%
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RECONCILIATION SUCCESS RATE

• As parameters T and M increases, it can correct more number of errors
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RECONCILIATION SUCCESS RATE
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Shaded area=71.3% Shaded area=63.7%

ECC—based scheme shows better reconciliation performance
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PARAMETER SELECTION
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• Take the mean of BARl and BARa 

• Find T that corresponds to the mean BAR on 50% success rate line 

• If BARl and BARa is both within shaded region (red and blue), 5% EER can be met

BARl = 90%   BARa = 70%
mean(BARl,BARa) = 80%BARl=90%

BARa=70%

BARl=84%

BARa=76%

5% EER achievable

BARl = 84%   BARa = 76%
mean(BARl,BARa) = 80%

5%  EER not achievable

5%50%95%Success rate:



RETAINED ENTROPY

• Strong attack model where the adversary has access to pre-distributed 
information to reconcile final key
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The final key of ECC—based scheme retains more entropy
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COMPUTATION

• Implemented in C and executed on Raspberry Pi 4 (ARM Cortex-A 1.4 Ghz) 

• ECC—based: under 3.2 ms, CS—based: under 100 ms
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DISCUSSION
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• Selecting the reconciliation scheme 

‣ ECC—based scheme outperforms the CS—based one in terms of reconciliation rate, retained 
entropy and computation 

• Framework implementation considering three bit error models with up to 
10% target EER validation 

‣ ECC—based: <2.5 kB of storage 

‣ CS—based: ~5 kB of storage 

• Our framework can 

‣ Compare the performance of past and future ZIPA works 

‣ Provide a guideline for existing ZIPA developers 

‣ Be implemented on existing ZIPA works



CONCLUSION

• We proposed a novel framework to determine a proper reconciliation 
parameter given user-defined authentication range 

‣ Efficient and effective key reconciliation 

‣ Balanced security and usability  

• We analyzed the most commonly used schemes in terms of 

‣ Reconciliation performance 

‣ Retained entropy 

‣ Computation  

• Help promote and explore systematic ZIPA pipeline
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ZERO-INTERACTION PAIRING AND AUTHENTICATION (ZIPA)

• Observing common contextual information means: 

‣ Devices are in same place at same time 

‣ Devices belong to same user 

• Example of contextual informations include:
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RSSI Audio Luminosity Image

Eliminates human-involvement during authentication



MOTIVATION AND CONTRIBUTION

• Existence of multiple key reconciliation scheme 

‣ Error correcting code (ECC)—based 

‣ Compressed sensing (CS)—based 

• We need better understanding of current reconciliation schemes 

‣ Error correcting performance 

‣ Computation 

‣ Entropy loss 

• Propose framework for ZIPA developers and existing ZIPA schemes  
to dynamically adjust authentication range and obtain proper parameter 

‣ Usually most works just let the users determine the proper parameter
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