IPSN 2021

Moonshine: An Online Randomness Distiller for Zero-Involvement Authentication

Jack West, Kyuin Lee, Suman Banerjee, Younghyun Kim, George K. Thiruvathukal, Neil Klingensmith

Zero-Involvement Authentication (ZIA)

- Minimal Communication Security Scheme
- Relies on a locally shared entropy source
- Great for scalable independent IoT systems

XXX

ZIA Examples

Entropy Source

Feature

Electrocardiogram	Authentication to a patient's wearables devices in emergency situations
Shaking two devices simultaneously	Fast context-based authentication
Received Signal Strength (RSS)	Stationary proximity based authentication
Ambient Audio	Context-based authentication

ZIA Schemes are based on contextual sources that two devices share

WHAT MAKES A GOOD KEY?

2¹²⁸ Possible Combinations

WHAT MAKES A GOOD KEY?

2¹²⁸ Possible Combinations 2 Combinations

2¹²⁸ Possible Combinations 2 Combinations

WHAT MAKES A GOOD KEY?

NIST Test Suite Evaluation

	Pass Rate	Frequency	Block Frequency	Cumulative Sums Fwd	Cumulative Sums Rev	Runs	Longest Run	Rank	FFT	Non-Overla p Template	Overlap Template	Universal	Approx. Entropy	Serial	Serial	Linear Complexity
Jana et al.	10/15															
H2B	8/15															
H2H	8/15															
Xi et al.	10/15															
Secret from Muscle	9/15															
Voltkey	8/15															

ZIA schemes has a randomness issue

Goal

Requirements

Uniformity	: Evenly distributed key generation
Scalability	: A small bit stream is as random as a long bit stream.
Consistency	: The first bit stream is as random as the last.

ASYMPTOTIC EQUIPARTITION PROPERTY

- Unfair coin: 70% chance of landing Heads.
- But the sequences HT and TH are equally likely.
- Moonshine extracts the typical set dynamically during runtime.
- Moonshine also discards bits to offset low entropy data skews.

Moonshine and the AEP

Moonshine makes Voltkey's data more uniform!

Moonshine

Manages and monitors the low entropy input

Discard Non-typical Set

Application of AEP

Remap Remaining Bits

Moonshine Compared directly with Von Neumann's randomness corrector

Moonshine Retains more data and passes more tests than Von Neumann!

Moonshine's Speed. Run on a Voltkey

Moonshine's parameters have a linear time complexity relationship!

Longer sequences produce better keys (as predicted by AEP)

Discard phase breaks up periodicity.

RF Frequencies, Audio, and Voltkey are single entropy sources.

Car, Office and Mobile are a culmination of sources correlated into a bit stream.

create better randomness!

XX

17

Voltkey, RF Frequencies, and Audio have initially better entropy.

Bit Sequence Length

Better entropy will allow for Moonshine to keep more data!

General Advice

- 1. Filter out as much periodic noise as possible
- 2. Pick a high entropy source
- 3. Use a randomness corrector (Moonshine, Fuzzy Corrector, etc.)

Conclusions

- 1. Further Application of the AEP does lead to better randomness
- 2. Moonshine offers a configurable randomness distiller for any noise source
- 3. ZIA schemes do improve when using Moonshine.

IPSN 2021

Moonshine: An Online Randomness Distiller for Zero-Involvement Authentication

Jack West, Kyuin Lee, Suman Banerjee, Younghyun Kim, George K. Thiruvathukal, Neil Klingensmith

jwest1@luc.edu

http://jacksonwaynewest.com

WEAK LAW OF LARGE NUMBERS

• A sequence of iid samples of a random variable X converges in probability to E[X]

ASYMPTOTIC EQUIPARTITION PROPERTY

- Weak law's little buddy
- Sequences of iid samples of a random variable are approximately uniformly distributed!
- No matter the underlying distribution
- Uniform approximation gets better as sequences get longer.

VoltKey

RF Signals (ProxiMate)

RSS (Ensamble)

×××

Weak Signal

OK Signal

28

NIST Randomness Evaluation Suite

Focuses of the NIST tests:

- Uniformity
- Scalability
- Consistency

ASYMPTOTIC EQUIPARTITION PROPERTY

Bit sequences gathered from Voltkey at runtime.

Voltkey's large non-typical set leads to worse randomness

Slide 4 papers

٠

- <u>https://www.researchgate.net/publication/330988253 Biometric-based Authentication Scheme f</u>
 <u>or Implantable Medical Devices during Emergency Situations</u>
- <u>https://www.researchgate.net/publication/221568367 Key Generation Based on Acceleration Da</u>
 <u>ta of Shaking Processes</u>
- <u>https://homes.cs.washington.edu/~lamarca/pubs/ensemble_mobisys10.pdf</u>