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abstract

The explosive growth in the number of connected and Internet-of-Things
(IoT) devices (e.g., smart speakers, lights, and thermostats) today calls
for more convenient and yet secure ways to establish wireless connection
between devices. Unfortunately, current device authentication method
between typical IoT devices heavily involves manual human interaction
by requiring the user to type in a pin or password to establish credentials
between two devices. Considering highly distributed and heterogeneous
nature of today’s connected environment, this unwieldy authentication
process particularly degrades the overall usability of IoT systems, which
often causes device users to perform poor security practices such as choos-
ing weak passwords or even reusing them. To overcome this usability
challenge that leads to various security vulnerabilities, researchers have de-
vised zero-interaction authentication (ZIA) technique which allow devices
to autonomously authenticate with each other through common secret
extracted from environmental contexts to prove co-existence of devices.

In this dissertation, I present series of works on designing and build-
ing novel ZIA techniques for spontaneous authentication of IoT devices
based on their deployment environments. More specifically, I first propose
two techniques named SyncVibe and ivPair, leveraging readily available
accelerometer to sense physical vibration in the ambient environment
and authenticate closely located wearable and mobile devices in various
portable scenarios. Secondly, I present two authentication techniques
named VoltKey and AeroKey, designed to seamlessly and continuously
associate indoor IoT devices using ubiquitously observable power line
noise and ambient electromagnetic radiation as a secret to authenticate
co-located devices in a fully autonomous manner. Specifically tailored
towards emerging mobile and resource-constrained IoT devices, the pro-
posed works effectively result in higher overall security and usability than
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traditional authentication approaches while maintaining high practicality
to be directly applicable to today’s already deployed devices. In addi-
tion, to address generic challenges and limitations that exist in the current
state-of-the-art ZIA works, I present a framework to automatically deter-
mine proper key reconciliation parameters that provide optimal balance
between security and usability.
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1 introduction

The number of connected and Internet-of-Things (IoT) devices has been
experiencing explosive growth, driven by emerging applications and ad-
vanced technologies, coupled with the active standardization of connected
ecosystems. It is predicted that by the end of year 2024, there will be
around 84 billion connected devices throughout the world, which is more
than double the number of devices that existed in 2020 [63]. According to
a former chief futurist of Cisco, there are around 127 newly introduced
devices that are being connected to the internet every second [62].

With this overwhelming growth in its numbers, there are various
environments in which these IoT devices are being deployed. As Figure 1.1
illustrates, the deployment environments can generally be categorized
into two major sectors: consumer and industrial. In the consumer sector,
personal, wearable, and home IoT devices, such as smart watches, smart

Consumer IoT Industrial IoT

Internet

Home

Personal

Manufacturing

Infrastructure

Figure 1.1: Wide deployment environments of the IoT devices are catego-
rized into two sectors: consumer and industrial.
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earbuds and speakers make our daily lives more efficient, effective, and
healthy. On the other hand, devices deployed in the industrial sector,
such as smart sensors and machines deployed in cities, warehouses, and
manufacturing plants ensure higher level of automation to maintain good
air quality, efficient traffic managements, and faster package deliveries. As
the awareness of connected efficiency grows in the market, every industry
and businesses of all sizes are thinking of ways to adopt IoT into their
day-to-day activities. However, while this increased connectivity brings
far too many benefits to our lives, adaptation of proliferating IoT devices
leads to scalability challenges much like any other technology systems.

1.1 motivation

One of the most paramount scalability challenges that has continued to
vex researchers is the question of how to quickly, securely, and seamlessly
verify the authenticity between connecting devices. Unfortunately, conven-
tional device authentication methods profoundly rely on manual human
involvement. For example, Bluetooth pairing activity or connecting a wire-
less device to an access point in a WiFi network require human verifiers
to type in a pin or password to verify that associating devices are trust-
worthy. Compared to traditional computing systems, this process can
be considered particularly more labor-intensive and usability degrading
when applied to current IoT systems for two reasons: i) Stringent con-
straints in the cost and the form factor have forced the manufactures to
build IoT devices with limited or no usable interfaces such as touchscreens
or keyboards (i.e., smart pens, smart bands). As a result, users are often
forced to introduce and use secondary device, most commonly the user’s
smart phones, to configure devices or to establish secure connection with
authorized devices. This makes traditional password- or pin-based au-
thentication significantly more tedious, difficult, and time-consuming [15].
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ii) Because device manufacturers do not consider overloading number of
devices from the user’s perspective, there currently exist no efficient and
usable form of collective device management, and the burden of managing
collection of devices falls on the user. For instance, in a typical home IoT
scenario, communication network comprises of multiple edge devices
connected to a single, centralized access point (WiFi router). To newly in-
troduce or to re-authenticate devices into this network setting, users need
to individually interact with different apps for different devices, which
results the overall device configuration and management process to be
labor-intensive and mentally overloading.

Usability is a key aspect of the authentication mechanism for IoT sys-
tems that are deployed and maintained by non-professional users. The
lack of usable authentication scheme has forced many personal and mo-
bile devices to choose usability over security and resulted in failures in
properly securing critical data. For instance, without a user interface to
enter a password, Bluetooth 5 devices use a common default password to
encrypt the communication messages used to establish an authentication
token [47, 22]. If a malicious adversary manages to gain physical access to
a Bluetooth 5 headset and unpair it, they can intercept the pairing messages
and extract the authentication token, ultimately gaining perpetual access
to the plaintext of all subsequent communications at a distance [60]. In the
case of home IoT systems, some IoT device manufacturers have inadver-
tently chosen usability over security and miserably failed in providing even
a minimum level of security. For instance, it was reported a few years ago
that 73,000 private unsecured smart cameras, including 11,000 in the U.S.
alone, were being streamed on the Internet because it was not mandated
to change the default password [20]. Despite the federal government’s
consumer advisory [29], more than 15,000 private smart cameras are still
unknowingly being streamed. In the industrial sector, according to report
by Palo Alto Networks’ threat intelligence team, out of 1.2 million IoT
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devices in thousands of physical locations across information technology
and healthcare organizations in the United States, 98% of all IoT device’s
traffic remains unencrypted, leaving data communications vulnerable to
eavesdropping by any adversary within the wireless range [13]. This
vulnerability can lead to catastrophic leakage of sensitive personal data
such as medical imaging, video monitoring footage, etc. Unfortunately,
authenticating devices with the password does not adequately address
this concern. Difficulties of authentication results in inexperienced users
opting not to change default or old WiFi passwords that leads to imminent
threat as disclosed in the 2016 Data Breach Investigations Report — 63% of
the confirmed data breaches are attributed to using weak, default, or stolen
passwords [69]. Also, in current IoT systems, once a common password is
leaked, all devices using the same password must undergo tedious and
error-prone password update procedures which is burdensome and slug-
gish. As the number of IoT devices that each user has to manage increases,
combined with their heterogeneous and distributed nature, employing
traditional security solutions fails to address the current problems in terms
of both security and usability.

1.2 objectives and contributions

In this dissertation, I propose series of novel device authentication tech-
niques towards the goal of improving usability of current IoT device au-
thentication, so that people who have limited or no skills to operate com-
puters can easily keep a secure connected environment. The proposed
techniques successfully give users an enhanced user experience by elimi-
nating inconveniences of conventional methods without compromising
the overall security. Furthermore, the proposed techniques require mini-
mal or no extra hardware overheads, which implies that they can easily be
adopted to wide range of resource-limited devices within today’s dynamic
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Security

PracticalityUsa
bi

lit
yHaving minimal or 

zero human-interaction
Easily applicable to commercial 
devices with low overhead

High robustness against malicious adversary

Figure 1.2: The three design aspects of the proposed device authentication
techniques.

IoT deployment and usage scenarios.
Overall, the proposed authentication methods successfully improves

upon conventional techniques in terms of the following three design as-
pects as illustrated in Figure 1.2.

1. Usability: The device authentication process can take place more
quickly and efficiently with minimal or no human involvement.

2. Practicality: The authentication technique requires minimal or no
hardware modifications to seamlessly be implemented into deployed
devices with various form factors.

3. Security: The authentication technique provides robust protection
against malicious adversaries attempting to gain unauthorized au-
thentication.

With the three design aspects in mind, the proposed techniques are sys-
tematically evaluated in various real-world settings to demonstrate their
effectiveness. Moreover, while building these series of techniques, I find
that there currently exist no efficient way for the end users to balance
the trade-off between usability and security of existing authentication
techniques. As such, this dissertation additionally presents the generic
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framework to automatically determine proper authentication parameter
that balances the security and usability of device authentication schemes.

This dissertation presents different techniques designed for IoT de-
vices that are classified into two deployment categories: mobile and indoor.
Devices that are in the mobile category refers to the battery operated de-
vices that are freely carried around by users such as smart phones, smart
watches, and wearable devices. On the other hand, devices within the in-
door category include all types of devices (including mobile) that are used
indoors, including constantly powered devices such as smart thermostats
or speakers that are designed to be mounted or not moving.

The rest of this dissertation is outlined as the following. Chapter 2
presents the background information and previous efforts of the research,
as well as defining the commonly used terminologies. Next, Chapter 3
details the two device authentication techniques named SyncVibe [40]
and ivPair [39] designed towards authentication between mobile and
wearable devices using physical vibration that can be sensed with ubiqui-
tously available accelerometers. In Chapter 4, I describe the techniques
named VoltKey [38] and AeroKey [41] to address indoor IoT device au-
thentication using power line noise and ambient electromagnetic radiation
that are omnipresent in the indoor environment. Followed by presenting
solutions to balance between security and usability of usable device au-
thentication [37] in Chapter 5, I discuss the future works and conclude
the dissertation in Chapter 6 and Chapter 7, respectively.
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2 background

This Chapter provides the underlying background information and define
the terminologies used to describe the presented works. In addition,
I comprehensively provide and discuss previous efforts to improve the
usability and security of device authentication through an emerging notion
called zero-interaction device authentication.

2.1 device authentication

Device authentication is a fundamental security process where two or
more devices that share no prior knowledge of each other build trust to
establish a secure wireless channel to communicate with each other [76].
Traditionally, the most basic form of device authentication leverages shared
secret (e.g., pre-shared key (PSK) or password), a something that only
the owner "knows", to verify each others identity [21]. For IoT devices,
device authentication is most commonly used to establish communication
protocol such as WiFi or Bluetooth, which is the standard backbone of the
wireless communication in IoT systems. For instance, in a typical smart
home setting, WiFi access points and IoT end-point devices mutually au-
thenticate each other through WiFi PSK (i.e., WiFi access point password)
to agree on cryptographic keys used to encrypt and decrypt packets within
the secure wireless channel [79]. Another example of device authentica-
tion which takes place between mobile devices (e.g., smart phone, smart
watches) is during the Bluetooth pairing procedure. Similar to WiFi PSK,
devices leverage a manually typed secret called pairing pin, typically much
shorter in length, to mutually agree on the cryptographic keys for secure
communication between devices.

However, secrets like PSK and passwords are usually recycled or eas-
ily gets passed around, which makes the entire network susceptible to
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