
Approximate Hardware Techniques for
Energy-Quality Scaling Across the System

Younghyun Kim, Joshua San Miguel, Setareh Behroozi,
Tianen Chen, Kyuin Lee, Yongwoo Lee, Jingjie Li, and Di Wu

Department of Electrical and Computer Engineering
University of Wisconsin–Madison

Madison, Wisconsin
{younghyun.kim, jsanmiguel, sbehroozi, tianen.chen, kyuin.lee, yongwoo.lee, jingjie.li}@wisc.edu, di.wu@ece.wisc.edu

Abstract—For error-resilient applications, such as machine
learning and signal processing, a significant improvement in
energy efficiency can be achieved by relaxing exactness constraint
on output quality. This paper presents a taxonomy of hardware
techniques to exploit the trade-off between energy efficiency and
quality in various computer subsystems. We classify approximate
hardware techniques according to target subsystem and support
for dynamic energy-quality scaling.

Index Terms—energy-quality scaling, approximate computing,
survey

I. INTRODUCTION

Energy efficiency is a major concern in computer system
design, which dictates the performance, operating cost, life-
time, and physical dimensions. A common approach to save
energy is to exploit timing slack, such as in dynamic power
management (DPM) and dynamic voltage and frequency
scaling (DVFS) that scale down computing performance by
lowering supply voltage and operating frequency as long as
the correctness of results is not compromised. Approximate
computing is a new computing paradigm to exploit quality
slack between the minimum quality required by the application
and the maximum quality producible by the system [1]–[3].
By relaxing correctness constraint, more aggressive power-
saving techniques can be applied to certain error-resilient
applications, such as machine learning, signal processing, and
multimedia applications, to explore energy-quality trade-offs
without resulting in significant quality degradation.

While compute subsystems for data processing is a key
element in computer systems, they are not the only subsys-
tems that account for a major share of energy consumption,
particularly in low-power systems. Non-compute subsystems
for data acquisition, transfer, and storage as well as for
user interaction, such as sensors, actuators, user interfaces,
and network interfaces, also consume a significant portion of
energy. Therefore, it is important to identify energy-quality
trade-offs in these subsystems and exploit them to enable full-
system energy-quality scaling to achieve high energy efficiency
that approximate computing alone cannot deliver.

In this paper, we present a taxonomy of approximate
hardware techniques encompassing both compute and non-

This work was supported in part by the Wisconsin Alumni Research
Foundation and NSF under award CNS-1845469.

compute subsystems. We classify techniques according to
their target subsystem and dynamic scalability, as shown in
Table I. We categorize target subsystems into i) processors and
logic, ii) memory and storage, iii) input and output, and iv)
interconnects and communication. An approximate technique
is deemed dynamically scalable if its energy-quality trade-off
can be adjusted at runtime within a certain range. Otherwise,
i.e., if the energy-quality trade-off is set at design time, it is
categorized as a static technique. Software-level approximate
computing techniques, such as loop perforation [4] and lossy
compression [5], as well as application-specific techniques,
such as those for neural networks [6], [7], are not in the scope
of this paper.

II. TAXONOMY

We categorize approximate hardware techniques into four
based on their target subsystem. Note that some techniques
appear multiple times if they are applicable to different sub-
systems.

A. Processors and Logic

Processors and logic circuits are the main target subsystems
of various approximate computing techniques, which include
both general-purpose processors and special-purpose custom
logic circuits. Various approximate computing techniques have
been proposed at different levels of computing abstraction—at
the device level, logic level, and architecture level.

Approximate arithmetic units perform near-accurate arith-
metic calculations at a much lower energy cost using smaller
core arithmetic units, with a superior energy-quality trade-off
than that of simple truncation. The energy-accuracy trade-offs
of static approximate arithmetic units are mainly determined
by the design parameters of the core arithmetic units, such
as bit width (BW) [8]–[10], [13]–[21], [24], [26], [27]. On
the other hand, some approximate arithmetic units support
dynamic scaling by selectively applying error correction or
performing progressive Taylor approximation [11], [12], [22],
[23], [25], [28].

Approximate load value prediction is a processor-level
approximation technique to mitigate the memory wall prob-
lem. Observing the error resilience of applications, when
program data yields a load miss in the processor cache, its

Authorized licensed use limited to: University of Wisconsin. Downloaded on October 06,2021 at 09:19:02 UTC from IEEE Xplore. Restrictions apply.

TABLE I
TAXONOMY OF APPROXIMATE HARDWARE TECHNIQUES.

Technique Subsystem References Quality control knobs Trade-off decision
Static Dynamic

Processors and logic

Approx. arithmetic units

Adder
[8]–[10] Core arithmetic unit BW 3

[11], [12] Error correction 3

Multiplier [13]–[17] Core arithmetic unit BW 3

Divider
[18]–[21] Core arithmetic unit BW 3

[22], [23] Taylor approximation order 3

Exponentiation
[24] Taylor approximation order 3

[25] Taylor approximation order 3

Logarithm
[26], [27] Core arithmetic unit BW 3

[28] Taylor approximation order 3

Approx. load value prediction Microprocessor [29]–[33] Cache miss/fetch ratio 3

Voltage overscaling (VOS) [34]–[41] Supply voltage 3

Approx. logic synthesis (ALS) Logic circuit [42]–[47] Boolean function exactness 3

Clock overgating [48] Clock gating schedule 3

Memory and storage

Approx. memory

SRAM
[49], [50] Cell structure and size 3

[49], [51]–[53] Supply voltage 3

[54]–[56] Refresh rate 3

DRAM [57] Supply voltage 3

[58] Restore time 3

[59], [60] Guard band width 3

Approx. storage Non-volatile memory (NVM) [61]–[63] Error correction 3

[64] Reusing faulty blocks 3

Input and output
Approx. sensing Off-chip sensors [65], [66] Supply voltage 3

Approx. displays
LCD [67], [68] Backlight brightness 3

OLED [69]–[71] Supply voltage 3

Interconnects and communication

On-chip interconnect
[72], [73] Error threshold 3

[74] Lossy injection rate 3

Approx. interconnects [73], [75]–[77] Error threshold 3

Off-chip interconnect [78] Error threshold 3

[79] Memory access BW 3

Approx. wireless networks
WiFi [80] Error correction and retransmission 3

On-chip wireless interconnect [81] Latency threshold 3

value can be predicted approximately with a learning-based
predictor. This approximate prediction is not speculative (thus
no rollback is required) and eliminates some data fetches,
reducing the energy and latency of accessing off-chip memory.
This technology is available for CPUs with minimal hardware
overhead [29], [30], [32], [33] as well as GPUs with no extra
logic [31]. The energy-quality trade-off is indicated by the
approximation degree, i.e., the ratio of actual memory fetches
and cache misses [29].

Voltage overscaling (VOS) is a technique that lowers
supply voltage below the minimum level required to meet
the timing constraint of the circuit to reduce dynamic and
static power consumption at the cost of timing errors at crit-
ical path [34]–[41]. VOS typically supports dynamic scaling
through runtime supply voltage adaptation. This technique is
widely applicable to a broad range of subsystems, including
logic, memory, and even sensors, if operation reliability is
gracefully degraded when the supply voltage is lowered.

Another technique that is generally applicable to logic
circuits is approximate logic synthesis (ALS) that synthesizes
a given Boolean function into a logic circuit that generates par-
tially correct output. This design-time technique is performed
by identifying and removing highly-correlated signals, leaving
only one of them, or by introducing don’t-care terms in the
logic function to allow aggressive logic simplification [42]–
[47]. Similarly, clock overgating reduces dynamic power
consumption by gating the clock signal to flip-flops more
aggressively, with some loss of exactness in logic output [48].

B. Memory and Storage
A variety of approximate memory and approximate storage

techniques have been proposed at different levels of the
memory hierarchy. A common technique in this approach is
to divide memory space into error-prone regions and error-
free regions for approximable data and non-approximable data,
respectively. Error-prone regions are often further divided into
multiple sub-regions with different error rates.

Authorized licensed use limited to: University of Wisconsin. Downloaded on October 06,2021 at 09:19:02 UTC from IEEE Xplore. Restrictions apply.

Design-time approximate SRAM techniques include using
heterogeneous cell structures (both 6-T and 8-T cells) and
heterogeneous cell sizes [49], [50]. More significant bits are
stored in stronger cells since errors in these locations are
more pronounced than errors in less significant bits. Accessing
DRAM is performed using sequences of commands with strict
timing constraints, and violating the constraints results in
unstable reads and writes. For example, each DRAM cell
must be refreshed every 64 ms to prevent retention errors due
to leakage, and this operation is responsible for 10–50% of
total power consumption and 10–45% of throughput loss in
DRAM [82]. Refresh rate reduction is a runtime technique
that relaxes the minimum refresh interval requirement and uses
much longer intervals of up to tens of seconds for the regions
designated for approximate data [54]–[56]. Similarly, using a
shorter write recovery time than the minimum constraint will
cause bit errors but improve power efficiency and through-
put [58]. The above-mentioned VOS technique can also be
applied to both SRAM [49], [51]–[53] and DRAM [57].

Approximate storage techniques on non-volatile memory
(NVM), such as NAND Flash and phase-change memory
(PCM), typically aim at improving throughput and lifetime,
rather than energy efficiency. A common technique for ap-
proximate NVM is to reduce the width of guard bands,
which is the gap between the cell threshold voltage or cell
resistance distributions of adjacent symbols. Wide guard bands
prevent confusion between adjacent symbols but require an
iterative, fine-grained program-and-verify write procedure to
precisely set the threshold voltage or resistance. Therefore,
allowing narrow guard bands, either by using coarse-grained
program-and-verify writes [59] or by decreasing the overall
range [60], the number of iterative writes can be reduced.

NVMs typically use error correction codes (ECC) to fix bit
errors, which incur both storage area overhead and latency
overhead. Therefore, selectively applying ECC only to non-
approximable data reduces read and write latencies for per-
forming error correction and free the space reserved for ECC
for other purposes [61]–[63]. Unlike these active approaches
that intentionally incur errors in normal cells, [64] is a passive
approach that tolerates unavoidable errors due to cell wear-out.
This approach aims to prolong the lifetime of NVM by reusing
blocks with too many dead cells as approximate data storage.

C. Input and Output

Computer systems interact with the physical world, includ-
ing human users and other systems, through input and output
devices. It is common that embedded systems are equipped
with various sensors, such as in wearable devices, which
often consume a significant amount of energy for continuous
sensing [66]. Reducing the sampling rate or precision of
sensing is a widely used technique for saving energy at the
expense of low-resolution measurement. The application of
VOS has been studied for sensors, such as accelerometer,
magnetometer, barometer, thermometer, etc [65], [66].

Display is one of the most power-hungry components in
mobile devices [83]. Blacklight dimming is an effective power-

saving technique in LCDs at the cost of reduced screen bright-
ness and contrast that results in user experience degradation.
To compensate for the loss of brightness, pixel values can
be adjusted to be perceived as the original bright pixel with
brighter backlight [67], [68], but some distortion of bright
images is unavoidable. OLED displays that have no backlight
can also take advantage of a similar energy-quality trade-off
by lowering the supply voltage level of the pixel array to save
power [69]–[71]. They can be considered as an approximate
display technique that trade user-perceived quality for power.

D. Interconnects and communication

On-chip interconnects consume a significant amount of en-
ergy in modern system-on-chip (SoC) devices, up to 50% [84].
The energy consumption of off-chip interconnects also is not
negligible when the system requires heavy off-chip memory
access or continuous reading of high-bandwidth sensors [76].
Approximate on-chip and off-chip interconnect techniques
aim to reduce power consumption of the transfer of approx-
imable data within the SoC [72]–[74] or between the SoC
and off-chip components [73], [75]–[79]. These techniques
largely rely on the fact that the data values have a non-uniform
distribution or a high spatiotemporal locality.

Unlike on-chip or off-chip interconnects that are relatively
free from transmission errors, wireless interfaces consume
significant energy for preventing or correcting transmission
errors. Approximate wireless interface techniques reduce the
energy overhead of forward error correction and retransmis-
sion by just accepting erroneous packets while minimizing
the impact of errors by assigning similar bits to adjacent
symbols [80]. In [81], approximate wireless communication
is used for on-chip communication, where the energy-quality
trade-off is controlled by dropping packets.

III. CONCLUSION

We presented a taxonomy that categorizes approximate
hardware techniques for various subsystems across the system,
based on their target components and dynamic scalability.
These techniques offer a great potential of energy savings for
various emerging error-resilient applications, such as machine
learning, yet their adoption is largely limited to isolated
application, rather than the integrated application of multiple
techniques to achieve the system-level optimality. To take full
advantage of energy-quality scalability across the system, a
full-system design framework is required to efficiently han-
dle the increased design complexity due to the new added
dimension—“quality” [85].

REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in IEEE European Test Sympo-
sium (ETS), 2013, pp. 1–6.

[2] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,” in
Design Automation Conference (DAC), 2015, pp. 120:1–120:6.

[3] M. Alioto, “Energy-quality scalable adaptive VLSI circuits and systems
beyond approximate computing,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, pp. 127–132.

Authorized licensed use limited to: University of Wisconsin. Downloaded on October 06,2021 at 09:19:02 UTC from IEEE Xplore. Restrictions apply.

[4] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in ACM European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), 2011, pp. 124–
134.

[5] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke,
“SAGE: Self-tuning approximation for graphics engines,” in IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2013, pp. 13–
24.

[6] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “ApproxANN: An
approximate computing framework for artificial neural network,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2015, pp. 701–706.

[7] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong,
“LogNet: Energy-efficient neural networks using logarithmic computa-
tion,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2017, pp. 5900–5904.

[8] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“IMPACT: Imprecise adders for low-power approximate computing,”
in IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), 2011, pp. 409–414.

[9] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate
XOR/XNOR-based adders for inexact computing,” in IEEE Interna-
tional Conference on Nanotechnology (NANO), 2013, pp. 690–693.

[10] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “EvoApprox8b:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017, pp. 258–261.

[11] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-
oriented approximate adder design and its application,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2013,
pp. 48–54.

[12] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate
arithmetic designs,” in Design Automation Conference (DAC), 2012, pp.
820–825.

[13] C. Lin and I. Lin, “High accuracy approximate multiplier with error
correction,” in IEEE International Conference on Computer Design
(ICCD), 2013, pp. 33–38.

[14] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance
approximate multiplier with configurable partial error recovery,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2014, pp. 1–4.

[15] K. Bhardwaj, P. S. Mane, and J. Henkel, “Power- and area-efficient
approximate Wallace tree multiplier for error-resilient systems,” in
International Symposium on Quality Electronic Design (ISQED), 2014,
pp. 263–269.

[16] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: a dynamic range
unbiased multiplier for approximate applications,” in IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), 2015, pp.
418–425.

[17] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and anal-
ysis of approximate compressors for multiplication,” IEEE Transactions
on Computers, vol. 64, no. 4, pp. 984–994, 2015.

[18] R. Zendegani, M. Kamal, A. Fayyazi, A. Afzali-Kusha, S. Safari, and
M. Pedram, “SEERAD: A high speed yet energy-efficient rounding-
based approximate divider,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2016, pp. 1481–1484.

[19] S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, and Z. Navabi,
“TruncApp: A truncation-based approximate divider for energy efficient
DSP applications,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017, pp. 1635–1638.

[20] H. Jiang, L. Liu, F. Lombardi, and J. Han, “Adaptive approximation in
arithmetic circuits: A low-power unsigned divider design,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2018,
pp. 1411–1416.

[21] H. Saadat, H. Javaid, and S. Parameswaran, “Approximate integer and
floating-point dividers with near-zero error bias,” in Design Automation
Conference (DAC), 2019, pp. 161:1–161:6.

[22] S. Behroozi, J. Li, J. Melchert, and Y. Kim, “SAADI: A scalable
accuracy approximate divider for dynamic energy-quality scaling,” in
Asia and South Pacific Design Automation Conference (ASP-DAC),
2019, pp. 481–486.

[23] J. Melchert, S. Behroozi, J. Li, and Y. Kim, “SAADI-EC: A quality-
configurable approximate divider for energy efficiency,” IEEE Transac-
tions on VLSI Systems, vol. 27, no. 11, pp. 2680–2692, 2019.

[24] P. Nilsson, A. U. R. Shaik, R. Gangarajaiah, and E. Hertz, “Hardware
implementation of the exponential function using Taylor series,” in IEEE
Nordic Circuits and Systems Conference (NORCHIP), 2014, pp. 1–4.

[25] D. Wu, T. Chen, C. Chen, O. Ahia, J. San Miguel, M. Lipasti, and
Y. Kim, “SECO: A scalable accuracy approximate exponential function
via cross-layer optimization,” in IEEE/ACM International Symposium
on Low Power Electronics and Design (ISLPED), 2019, pp. 1–6.

[26] J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Transactions on Electronic Computers, no. 4, pp. 512–
517, 1962.

[27] M. B. Sullivan and E. E. Swartzlander, “Truncated logarithmic approx-
imation,” in IEEE Symposium on Computer Arithmetic (ARITH), 2013,
pp. 191–198.

[28] M. R. Weirich, G. Paim, E. A. C. da Costa, and S. Bampi, “A fixed-point
natural logarithm approximation hardware design using Taylor series,”
in New Generation of Circuits & Systems Conference (NGCAS), 2018,
pp. 53–56.

[29] J. San Miguel, M. Badr, and N. E. Jerger, “Load value approximation,”
in IEEE/ACM International Symposium on Microarchitecture (MICRO),
2014, pp. 127–139.

[30] B. Thwaites, G. Pekhimenko, H. Esmaeilzadeh, A. Yazdanbakhsh,
J. Park, G. Mururu, O. Mutlu, and T. Mowry, “Rollback-free value
prediction with approximate loads,” in International Conference on
Parallel Architecture and Compilation Techniques (PACT), 2014, pp.
493–494.

[31] M. Sutherland, J. San Miguel, and N. E. Jerger, “Texture cache approx-
imation on gpus,” in Workshop on Approximate Computing Across the
Stack, 2015.

[32] A. Yazdanbakhsh, B. Thwaites, H. Esmaeilzadeh, G. Pekhimenko,
O. Mutlu, and T. C. Mowry, “Mitigating the memory bottleneck with
approximate load value prediction,” IEEE Design and Test, vol. 33, no. 1,
pp. 32–42, 2016.

[33] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh,
O. Mutlu, and T. C. Mowry, “RFVP: Rollback-free value prediction
with safe-to-approximate loads,” ACM Transactions on Architecture and
Code Optimization, vol. 12, no. 4, pp. 62:1–62:26, 2016.

[34] P. K. Krause and I. Polian, “Adaptive voltage over-scaling for resilient
applications,” in Design, Automation & Test in EuropeConference &
Exhibition (DATE), 2011, pp. 1–6.

[35] S. Lee, L. K. John, and A. Gerstlauer, “High-level synthesis of approx-
imate hardware under joint precision and voltage scaling,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017,
pp. 187–192.

[36] R. Hegde and N. R. Shanbhag, “Soft digital signal processing,” Trans-
actions on VLSI Systems, vol. 9, no. 6, pp. 813–823, 2001.

[37] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redistribution
for graceful degradation under voltage overscaling,” in Asia and South
Pacific Design Automation Conference (ASP-DAC), 2010, pp. 825–831.

[38] G. Zervakis, K. Koliogeorgi, D. Anagnostos, N. Zompakis, and
K. Siozios, “VADER: Voltage-driven netlist pruning for cross-layer
approximate arithmetic circuits,” IEEE Transactions on VLSI Systems,
vol. 27, no. 6, pp. 1460–1464, 2019.

[39] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design of
voltage-scalable meta-functions for approximate computing,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2011, pp. 1–6.

[40] H. Amrouch, S. B. Ehsani, A. Gerstlauer, and J. Henkel, “On the
efficiency of voltage overscaling under temperature and aging effects,”
IEEE Transactions on Computers, vol. 68, no. 11, pp. 1647–1662, 2019.

[41] V. K. Chippa, D. Mohapatra, K. Roy, S. T. Chakradhar, and A. Raghu-
nathan, “Scalable effort hardware design,” IEEE Transactions on VLSI
Systems, vol. 22, no. 9, pp. 2004–2016, 2014.

[42] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “SALSA: systematic logic synthesis of approximate circuits,” in
Design Automation Conference (DAC). IEEE, 2012, pp. 796–801.

[43] C. Li, W. Luo, S. S. Sapatnekar, and J. Hu, “Joint precision optimiza-
tion and high level synthesis for approximate computing,” in Design
Automation Conference (DAC), 2015, pp. 1–6.

[44] Y. Wu and W. Qian, “An efficient method for multi-level approximate
logic synthesis under error rate constraint,” in Design Automation
Conferece (DAC), 2016, pp. 128:1–128:6.

Authorized licensed use limited to: University of Wisconsin. Downloaded on October 06,2021 at 09:19:02 UTC from IEEE Xplore. Restrictions apply.

[45] G. Pasandi, S. Nazarian, and M. Pedram, “Approximate logic synthe-
sis: A reinforcement learning-based technology mapping approach,” in
International Symposium on Quality Electronic Design (ISQED), 2019,
pp. 26–32.

[46] J. Miao, A. Gerstlauer, and M. Orshansky, “Multi-level approximate
logic synthesis under general error constraints,” in IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), 2014, pp.
504–510.

[47] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: A unified design paradigm for approximate and quality con-
figurable circuits,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2013, pp. 1367–1372.

[48] Y. Kim, S. Venkataramani, K. Roy, and A. Raghunathan, “Designing
approximate circuits using clock overgating,” in Design Automation
Conference (DAC), 2016, pp. 1–6.

[49] I. J. Chang, D. Mohapatra, and K. Roy, “A priority-based 6T/8T hybrid
SRAM architecture for aggressive voltage scaling in video applications,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 21, no. 2, pp. 101–112, 2011.

[50] J. Kwon, I. J. Chang, I. Lee, H. Park, and J. Park, “Heterogeneous SRAM
cell sizing for low-power H.264 applications,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 59, no. 10, pp. 2275–2284,
2012.

[51] L. Yang and B. Murmann, “SRAM voltage scaling for energy-efficient
convolutional neural networks,” in International Symposium on Quality
Electronic Design (ISQED), 2017, pp. 7–12.

[52] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester, and M. Alioto,
“SRAM for error-tolerant applications with dynamic energy-quality
management in 28 nm CMOS,” IEEE Journal of Solid-State Circuits,
vol. 50, no. 5, pp. 1310–1323, 2015.

[53] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2012, pp. 301–312.

[54] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker:
Saving DRAM refresh-power through critical data partitioning,” in ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011, pp. 213–224.

[55] A. Raha, H. Jayakumar, S. Sutar, and V. Raghunathan, “Quality-aware
data allocation in approximate DRAM,” in International Conference on
Compilers, Architecture and Synthesis for Embedded Systems (CASES),
2015, pp. 89–98.

[56] M. Jung, D. M. Mathew, C. Weis, and N. Wehn, “Approximate
computing with partially unreliable dynamic random access mem-
ory—Approximate DRAM,” in Design Automation Conference (DAC),
2016, pp. 1–4.

[57] S. Koppula, L. Orosa, A. G. Yağlıkçı, R. Azizi, T. Shahroodi, K. Kanel-
lopoulos, and O. Mutlu, “EDEN: Enabling energy-efficient, high-
performance deep neural network inference using approximate DRAM,”
in IEEE/ACM International Symposium on Microarchitecture (MICRO),
2019, pp. 166–181.

[58] X. Zhang, Y. Zhang, B. R. Childers, and J. Yang, “DrMP: Mixed
precision-aware DRAM for high performance approximate and precise
computing,” in International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2017, pp. 53–63.

[59] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage
in solid-state memories,” in IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2013, pp. 25–36.

[60] J. Cui, Y. Zhang, L. Shi, C. J. Xue, W. Wu, and J. Yang, “ApproxFTL: On
the performance and lifetime improvement of 3-D NAND Flash-based
SSDs,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 10, pp. 1957–1970.

[61] Q. Guo, K. Strauss, L. Ceze, and H. S. Malvar, “High-density image stor-
age using approximate memory cells,” in ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2016, pp. 413–426.

[62] F. Li, Y. Lu, Z. Wu, and J. Shu, “ASCache: An approximate SSD
cache for error-tolerant applications,” in Design Automation Conference
(DAC), 2019, pp. 214:1–214:6.

[63] Q. Li, L. Shi, J. Yang, Y. Zhang, and C. J. Xue, “Leveraging approximate
data for robust Flash storage,” in Design Automation Conference (DAC),
2019, pp. 215:1–215:6.

[64] L. Han, H. Amrouch, Z. Shao, and J. Henkel, “Rebirth-FTL: Lifetime
optimization via approximate storage for NAND Flash,” in IEEE Non-

Volatile Memory Systems and Applications Symposium (NVMSA), 2019,
pp. 1–6.

[65] P. Stanley-Marbell and M. Rinard, “A hardware platform for efficient
multi-modal sensing with adaptive approximation,” arXiv:1804.09241,
2018.

[66] ——, “Lax: Driver interfaces for approximate sensor device access,” in
ACM Hot Topics in Operating Systems (HoTOS), 2015, pp. 27–27.

[67] B. Anand, K. Thirugnanam, J. Sebastian, P. G. Kannan, A. L. Ananda,
M. C. Chan, and R. K. Balan, “Adaptive display power management for
mobile games,” in ACM International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2011, pp. 57–70.

[68] N. Chang, I. Choi, and H. Shim, “Dls: dynamic backlight luminance
scaling of liquid crystal display,” Transactions on VLSI Systems, vol. 12,
no. 8, pp. 837–846, 2004.

[69] D. Shin, Y. Kim, N. Chang, and M. Pedram, “Dynamic voltage scaling
of OLED displays,” in Design Automation Conference (DAC), 2011, pp.
53–58.

[70] X. Chen, J. Zheng, Y. Chen, M. Zhao, and C. J. Xue, “Quality-retaining
OLED dynamic voltage scaling for video streaming applications on
mobile devices,” in Design Automation Conference (DAC), 2012, pp.
1000–1005.

[71] D. Shin, Y. Kim, N. Chang, and M. Pedram, “Dynamic driver supply
voltage scaling for organic light emitting diode displays,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 32, no. 7, pp. 1017–1030, 2013.

[72] R. Boyapati, J. Huang, P. Majumder, K. H. Yum, and E. J. Kim,
“APPROX-NoC: A data approximation framework for network-on-chip
architectures,” in International Symposium on Computer Architecture
(ISCA), 2017, pp. 666–677.

[73] J. R. Stevens, A. Ranjan, and A. Raghunathan, “AxBA: An approximate
bus architecture framework,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2018, pp. 1–8.

[74] Z. Li, J. San Miguel, and N. E. Jerger, “The runahead network-on-
chip,” in IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2016, pp. 333–344.

[75] Y. Kim, S. Behroozi, V. Raghunathan, and A. Raghunathan, “AxSerBus:
A quality-configurable approximate serial bus for energy-efficient sens-
ing,” in IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), 2017, pp. 1–6.

[76] S. Behroozi, V. Raghunathan, A. Raghunathan, and Y. Kim, “A quality-
configurable approximate serial bus for energy-efficient sensory data
transfer,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 8, no. 3, pp. 379–390, 2018.

[77] D. J. Pagliari, E. Macii, and M. Poncino, “Serial T0: Approximate bus
encoding for energy-efficient transmission of sensor signals,” in Design
Automation Conference (DAC), 2016, pp. 1–6.

[78] P. Stanley-Marbell and M. Rinard, “Reducing serial I/O power in error-
tolerant applications by efficient lossy encoding,” in Design Automation
Conference (DAC), 2016, pp. 62:1–62:6.

[79] Y. Tian, Q. Zhang, T. Wang, F. Yuan, and Q. Xu, “ApproxMA:
Approximate memory access for dynamic precision scaling,” in Great
Lakes Symposium on VLSI (GLSVLSI), 2015, pp. 337–342.

[80] S. Sen, S. Gilani, S. Srinath, S. Schmitt, and S. Banerjee, “Design and
implementation of an “approximate” communication system for wireless
media applications,” in ACM SIGCOMM Conference (SIGCOMM),
2010, pp. 15–26.

[81] V. Fernando, A. Franques, S. Abadal, S. Misailovic, and J. Torrellas,
“Replica: A wireless manycore for communication-intensive and approx-
imate data,” in ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2019,
pp. 849–863.

[82] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-aware
intelligent DRAM refresh,” in International Symposium on Computer
Architecture (ISCA), 2012, pp. 1–12.

[83] A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone.” in USENIX Annual Technical Conference (ATC), 2010.

[84] V. Raghunathan, M. B. Srivastava, and R. K. Gupta, “A survey of
techniques for energy efficient on-chip communication,” in Design
Automation Conference (DAC), 2003, pp. 900–905.

[85] A. Raha and V. Raghunathan, “Approximating beyond the processor:
Exploring full-system energy-accuracy tradeoffs in a smart camera
system,” IEEE Transactions on VLSI Systems, vol. 26, no. 12, pp. 2884–
2897, Dec 2018.

Authorized licensed use limited to: University of Wisconsin. Downloaded on October 06,2021 at 09:19:02 UTC from IEEE Xplore. Restrictions apply.

